A Study on Rough Set Theory Based Dynamic Reduct for Classification System Optimization

نویسندگان

  • Shampa Sengupta
  • Asit Kumar Das
چکیده

In the present day huge amount of data is generated in every minute and transferred frequently. Although the data is sometimes static but most commonly it is dynamic and transactional. New data that is being generated is getting constantly added to the old/existing data. To discover the knowledge from this incremental data, one approach is to run the algorithm repeatedly for the modified data sets which is time consuming. Again to analyze the datasets properly, construction of efficient classifier model is necessary. The objective of developing such a classifier is to classify unlabeled dataset into appropriate classes. The paper proposes a dimension reduction algorithm that can be applied in dynamic environment for generation of reduced attribute set as dynamic reduct, and an optimization algorithm which uses the reduct and build up the corresponding classification system. The method analyzes the new dataset, when it becomes available, and modifies the reduct accordingly to fit the entire dataset and from the entire data set, interesting optimal classification rule sets are generated. The concepts of discernibility relation, attribute dependency and attribute significance of Rough Set Theory are integrated for the generation of dynamic reduct set, and optimal classification rules are selected using PSO method, which not only reduces the complexity but also helps to achieve higher accuracy of the decision system. The proposed method has been applied on some benchmark dataset collected from the UCI repository and dynamic reduct is computed, and from the reduct optimal classification rules are also generated. Experimental result shows the efficiency of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing The Classification System Based On Rough Set Theory

Every day, we are observing that a wide-ranging amount of data and information is being stored every moment. Mostly the information is dynamic and transactional, and each time the data is being updated from time to time. Getting knowledge from this kind of huge and dynamic data is really becoming tough task with respect to time and efficiency. Fortunately we are served with the intelligent proc...

متن کامل

A Dimension Reduction Approach to Classification Based on Particle Swarm Optimisation and Rough Set Theory

Dimension reduction aims to remove unnecessary attributes from datasets to overcome the problem of “the curse of dimensionality”, which is an obstacle in classification. Based on the analysis of the limitations of the standard rough set theory, we propose a new dimension reduction approach based on binary particle swarm optimisation (BPSO) and probabilistic rough set theory. The new approach in...

متن کامل

A Novel Rough Set Reduct Algorithm for Medical Domain Based on Bee Colony Optimization

Feature selection refers to the problem of selecting relevant features which produce the most predictive outcome. In particular, feature selection task is involved in datasets containing huge number of features. Rough set theory has been one of the most successful methods used for feature selection. However, this method is still not able to find optimal subsets. This paper proposes a new featur...

متن کامل

Reduct Generation for the Incremental Data Using Rough Set Theory

In today’s changing world huge amount of data is generated and transferred frequently. Although the data is sometimes static but most commonly it is dynamic and transactional. New data that is being generated is getting constantly added to the old/existing data. To discover the knowledge from this incremental data, one approach is to run the algorithm repeatedly for the modified data sets which...

متن کامل

An Optimized Classifier Frame Work based on Rough Set and Random Tree

Over the past two decades, Machine Learning has become one of the mainstays of information technology. Machine learning is concerned with the development of algorithms and achieves optimization classification of attributes. Classification under the decision tree is the prediction approach of data mining techniques. In the decision tree, classification algorithm has the most common classifier to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014